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ABSTRACT 
This paper focuses on the use of  labeling schemes for evaluating 
queries on DAG structured data,  such as pedigrees and ontologies 
that are stored in a relational database. We compare using Dewey+ 

labeling, NodeCodes and its va riants for the evaluation of 
ancestor/descendant queries on ontologies and inbreeding 
coefficient calculation on pedigrees. Ancestor/descendant queries 
can be ans wered bas ed on the exis tence of the paths  between 
nodes, while inbreeding coefficient calculations require the 
complete path inform ation. W hile Dewey + performs slightly  
better for descendant queries fo r DAGs with low selectivity , it 
cannot be used to evaluate queries requiring path information, e.g. 
inbreeding coefficient queries for pedigrees. NodeCodes enable 
evaluation of both ty pes of queri es (requiring path information, 
and ancestor/descendant queries) efficiently. 

Categories and Subject Descriptors 
H.3.1 [ Information Storage and Retrieval]: Content Analy sis 
and Indexing – Indexing methods.  

1. INTRODUCTION 
In biomedicine and bioinformatics, ontologies are nowadays 
commonly used to annotate objects of interest, such as biological 
samples, clinical pictures , or s pecies in a s tandardized way . F or 
example, the Gene Ontology (GO) [1] is  the res ult of an effort 
aimed at providing a controlled vo cabulary for describing roles of 
genes and gene products in any  or ganism. In these applications, 
an ontology is merely  a structured vocabulary  in the form of a 
directed acyclic graph (DAG) of concepts.  Ty pically, ontologies 
are stored together with the data they  annotate in relational 
databases. 
In past years, some web-based tools for GO have been developed 
to help res earchers brows e and s earch for GO terms. e.g., 
Ontology Search and Browser provided by  WormBase [2]. A user 
can subm it a GO term  through the user interface, and then the 
browser returns all the paths from  the root terms, biological 
process, cellular component and molecular function, to the input 
term. There are also some online tools for measuring the semantic 
similarities of GO term s. For in stance G-SESAME [3]  contains a 
tool for m easuring the sem antic sim ilarity of GO terms. In G-
SESAME, the semantics of a GO term are determined based on its 
relationship with the other terms, and its location in the entire GO 
graph. According to the functionalities of the GO-term -based 

tools, there are some frequently  us ed queries  for GO, s uch as  
ancestor query, descendant query , and path query . In existing 
tools, these queries are processed by iteratively traversing the GO 
graph, which lacks scalability . W ith the increasing use of large 
ontologies, such as SNOMED [4] , it is even m ore im portant to 
have efficient and scalable methods for evaluating relationship-
related queries on large DAG-shaped hierarchies. 
In addition to GO, pedigrees are ty pically represented as DAGs 
as well. More precisely, a pedigree can be defined as “a simplified 
diagram of a family’s genealogy  that shows family  members’ 
relationships to each other and how a specific trait, abnormality, 
or disease has been inherited” [5] in human genetics. Pedigrees 
are hierarchical hereditary  structures which are utilized to trace 
the inheritance of a specific trait or dis ease, calculate genetic ris k 
ratios, and identify  individuals at risk. Efficiently  evaluating 
descendant/ancestor, as we ll as, finding nearest common 
ancestors are among the frequently run queries in human genetics. 
Furthermore, com puting inbreeding coefficients  is  a significant 
and practical issue in modern genetics [5, 6] . The inbreeding 
coefficient measures the probability  that the two alleles of a gene 
are received from  the s ame ances tor [12] . It is  zero if the 
individual is not inbred. Traditional calculation m ethod utilizes 
recursive formula, which is quite time-consuming and cannot 
scale very well on large pedigrees. In this paper, our interests are 
not only  efficiently  computing inbreeding coefficients on large 
pedigrees, but als o efficiently evaluating frequent query set, such 
as descendant/ancestor queries on large ontologies that are s tored 
in a relational database. 
In this paper, we present Dewey + labeling, NodeCodes, and two 
variants of NodeCodes by  increm ental and aggregative labeling, 
for DAG-shaped hierarchies.  We then demonstrate the efficiency 
of descendant/ancestor query evaluation by  using only  the 
generated labels. In addition, we show NodeCodes can be used for 
evaluating more complex queries , such as  inbreeding coefficient 
calculation. W e als o pres ent experim ental results evaluating the 
performance of four labeling methods for descendant/ancestor 
query as well as the inbreeding coefficients calculation.  

2. FAMILY OF LABELING SCHEMES 
In this paper,  we focus on labeling schemes for DAG-shaped 
hierarchies, because most com monly us ed ontologies  and all 
pedigrees are DAG-shaped. 

2.1 Dewey+ Labeling 
For a tree T, the Dewey labeling [7] directly encodes the parent of 
a node in T, as a prefix of its label us ing for instance a depth-first 
tree traversal. More precisely , the label of a node v in T is l(u)l(v) 
where l(u) is the label of its parent u, l(v) is the sibling order of v 
among u’s children. 
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For a directed acyclic graph G, a spanning tree T of the graph G is 
constructed in the firs t place. As  a result, the edges are divided 
into tree-edges and non-tree edges. The spanning tree T is 
encoded using a depth-first tree traversal. Therefore, each node in 
T is assigned a unique label. Then, given a non-tree edge from u 
to v, the label of u is propagated to v and all the descendants of v 
by storing an entry [id(d), l(u)] where d is either v or a descendant 
of v, id(d) is the id of d.  This extension of the Dewey labeling for 
DAGs [8] is called Dewey+ labeling in this paper. 

2.2 NodeCodes 
NodeCodes is a graph encoding sc heme originally  proposed for 
encoding single source directed graphs [9] . First the roots  (nodes 
with in-degree 0) are labeled (w e may  consider adding a virtual 
source node s and making all roots children of s). For each node u 
in the graph, the set of NodeCodes of u, denoted NC( u), are 
assigned using a breadth-first-search travers al s tarting from  the 
source node as follows: if u is the virtual source node s, then 
NC(u) contains only  one element, the empty  string. Let u be a 
node with a set of NodeCodes, NC( u), and v0, v1, … vk be u’s 
children in s ibling order, then  for each x in NC( u), a code xi is 
added to NC(vi), where 0  i  k.  

2.3 Variants of NodeCodes 
A variant of NodeCodes for pedigrees called Family NodeCodes 
is introduced in [5] . It enables evaluating pedigree queries 
efficiently. Here, we consider partitioning ontologies to trees and 
present two labeling schemes based on this tree partitioning. 
The idea behind tree-based partitioning for arbitrary  taxonomies 
is based on the observation that, in a tree, each node has a single 
NodeCode. The automated identification of local tree structures in 
a taxonomy can be performed as follows: i) starting from level 0, 
traverse the taxonomy  in breadth-first manner; ii) whenever a 
node v with multiple parents is encountered start a new tree with n 
as its root; iii) repeat this pr ocedure until all the nodes in the 
taxonomy are exhausted.  

2.3.1 Incremental Labeling 
Root node n of a local tree contains two sets of NodeCodes: (i) 
global NodeCodes: standard NodeCodes that are inherited from 
n’s immediate parents in other trees, and (ii) local NodeCodes: an 
independent newly generated local  NodeCode, one per node in a 
tree. The other nodes in a tree are labeled using the standard 
NodeCode approach, where only  the local NodeCode of the root 
node is considered for labeling other nodes in the same tree. Since 
each root node has a single local NodeCode, in each tree, it is 
guaranteed that all nodes (except the root node) have a single 
node code.  

2.3.2 Aggregative Labeling 
In this labeling scheme, global NodeCode set of the root node n in 
a tree Ti includes global NodeCodes of roots in those trees that are 
above Ti according to the hierarchical organization of the 
taxonomy, as well as the NodeCodes that are inherited from n’s 
direct parents using standa rd NodeCode labeling scheme . The 
internal nodes in each tree are labeled in the sam e way as done in 
incremental labeling approach as illustrated in Section 2.3.1.  

3. QUERY EVALUATIONS 

3.1 Processing Descendant Query 
Given a term  t in a taxonomy  T, the goal of this query  is to find 
the set of all descendant terms of t in T. 

1) Using standard NodeCode s: obtain the terms whose 
NodeCodes start with t’s NodeCode. 
2) Using incremental NodeCodes:  first obtain the terms whose 
NodeCodes start with t’s local NodeCode. Then, from  each local 
tree, we can iteratively use the root of the local tree to obtain all 
its descendant terms.  
3) Using aggregative NodeCodes:  first obtain the terms whose 
NodeCodes start with t’s local NodeCode. Then, from  each local 
tree, we can us e the root of the local tree to obtain all its 
descendant terms. 
4) Using Dewey + labels: first get the descendants of t that are 
reachable to t by  tree edges . Then, we proces s the ( TermID, 
ancestorLabel) entries to get the descendants that are reachable to 
t with at least one non-tree edge.  
3.2 Processing Ancestor Query 
Given a term t in a taxonomy  T, the goal of this query  is to find 
the set of all ancestor terms of t in T. 
1) Using standard NodeCodes: obtain the prefixes of all t’s 
NodeCodes, which each unique prefix corresponds to an ancestor 
of t.  
2) Using incremental NodeCodes: first obtain the prefixes of t’s 
local NodeCode, plus the prefixes of t’s global NodeCodes, if 
exist. Then, from each local tree, we can iteratively use the root of 
the local tree to obtain all its ancestor terms. 
3) Using aggregative NodeCodes: first obtain the prefixes of t’s 
local NodeCode, plus the prefixes of t’s global NodeCodes, if 
exist. Then, from each local tree, we  can use the root of the local 
tree to obtain all its ancestor terms. 
4) Using Dewey + labels: get the ances tors of that are reachable to 
t by  tree edges . Then, we proces s the ( TermID, ancestorLabel) 
entries to return the labe ls of the ances tors of t that are reachable 
to t with at least one non-tree edge. 

3.3 Processing Inbreeding Query 
If an individual has inbreeding, the inbreeding coefficient is 
calculated using Wright’s formula [10] , where the paths from an 
ancestor to a given individual are required. First of all, 
NodeCodes has the capability for directly  identify ing all paths 
from a progenitor to a given individual. Although incremental and 
aggregative NodeCodes can iteratively  identify  the paths using 
both local NodeCodes and globa l NodeCodes, they  are less 
efficient than s tandard NodeCodes. While, Dewey+ labels cannot 
fully obtain the path information from the non-tree edges 
propagation table, which cannot contribute to the inbreeding 
query. Below presents the general outline for calculating the 
inbreeding coefficient of an individual p using NodeCodes. 

CalculatingInbreedingCoefficients 

Input: NodeCodes NC(p) 
Output: Inbreeding coefficient of p 
1. Find the NodeCodes of mother m and father f of individual p. 
2. Identify common ancestors of mother m and father f. 
3. For each common ancestor c 
     a. Find the set of pairs of paths from c to m and f. 
     b. Identify non-overlapping pairs of paths 
     c. Find the number of generations between the common 
ancestor and the individual for the non-overlapping pairs of paths. 
     d. Compute the inbreeding coefficient. 
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The details of using NodeCodes for inbreeding coefficients 
computation can be found in [5] . In addition, we also 
demonstrated the efficiency  of  using NodeCodes for kinship 
coefficients, and generalized kins hip coefficients  which are 
important genetic measures in modern genetics as well [6].  

4. EXPERIMENTS 
In this section, we show the e fficiency of four labeling methods 
for ancestor and descendant queries on GO. The total number of 
labels for GO is listed in Table 1.  We tested the effectivenes s of 
four labeling methods using C#  2005 and SQL Server 2005.  All 
queries were run on cold cache and the test machine was a 2.0Ghz 
Pentium 4 with 1GB RAM running Windows XP. For GO, we 
compare 5 methods: Iterative, StandardNC, IncrementalNC, 
AggregativeNC, and Dewey+ Labeling.  Iterative method refers to 
the method which the descendants/ancestors of a given term by 
iteratively traversing the GO graph. 

Table 1. The number of labels using four labeling schemes 
Methods # of Labels AVG (labels per term) 

StandardNC 330,802 13 
IncrementalNC 52,126 2 
AggregativeNC 213,725 8 

Dewey+ Labeling 129,557 5 

First, we run des cendant queries  on 5 different cases: each case 
corresponds to a different choice of input node and therefore of 
query selectivity . In this paper, for any query, its selectivity is 
defined as the proportion of terms that it returns. In this 
experiment, we choose the sel ectivity ranging from 58.7% to 
0.01%. We run thes e five queries  50 tim es each and the average 
query processing time is shown in Table 2.  

Table 2. Execution time (ms) of descendant query for 5 cases 
(% selectivity) 

Methods  
Case1 Case2 Case3 Case4 Case5 

58.7% 22. 1% 4. 96% 1. 27% 0.01% 
Iterative   125031 47687 10359 2656 31 

StandardNC       656 484 609 437 531 
IncrementalNC    35453 2937 984 156 62 
AggregativeNC    19875 1718 500 171 31 
Dewey+Labeling  28187 3343 140 125 31 

According to Table 2, we can recom mend the us e of a particular 
labeling scheme according to the characteristics of a taxonomy. In 
GO, the average selectivity of all term s is 0.04%, which is close 
to Cas e5. Cons idering the s pace cos t and tim e cos t, Dewey+ 
Labeling is a good choice for GO. 
Then, we run ancestor queries for 5 cases having different 
selectivity.  In this experiment, we choose the selectivity  ranging 
from 2.13% to 0.118%. W e run these five queries 50 times each 
and the average query processing time is shown in Table 3.  
Table 3. Execution time (ms) of ancestor query for 5 cases (% selectivity) 

Methods 
Case1 Case2 Case3 Case4 Case5 

2.13% 1. 06% 0.552% 0.276% 0.118% 
Iterative   468 234 125 78 31 

StandardNC       484 500 765 671 296 
IncrementalNC    359 109 31 31 31 
AggregativeNC    156 93 62 62 31 
Dewey+Labeling  234 171 46 46 31 
As can be seen, for Case1 and Case2, AggregativeNC performs 
best. As the selectivity  becomes lesser, IncrementalNC performs 
best for Case3 and Case4. For Case5, Iterative, IncrementalNC, 

AggregativeNC, and Dewey+ Labeling have the same query  
processing time. 
In this experiment, we show th e effectiveness of NodeCodes  for 
inbreeding query by comparing the use of NodeCodes with a 
recursive method used in existing systems [11].  First, we show 
the effect of pedigree size on the query  processing time. The 
results are s hown in F igure 4 for the average tim e per query for 
each pedigree (as the pedigree size doubles).  
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Figure 4: Effect of Pedigree Size on Average Query Time 
in Synthetic Pedigrees (100 random individ. each)
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As can be s een, the expected tim e per query  grew increas ingly 
longer on iterative compared to NodeCodes as the pedigree size 
increased, from a comparable amount of time on the small 
pedigrees (<3000 individuals) to twice as much time per query  on 
the largest. 
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