
Efficient Query Evaluation for DAG-shaped Hierarchies
En Cheng

Case Western Reserve University
Cleveland, OH, 44106, USA

en.cheng@case.edu

Ali Cakmak
Case Western Reserve University

Cleveland, OH, 44106, USA
ali.cakmak@case.edu

Z. Meral Ozsoyoglu
Case Western Reserve University

Cleveland, OH, 44106, USA
meral@case.edu

ABSTRACT
This paper focuses on the use of labeling schemes for evaluating
queries on DAG structured data, such as pedigrees and ontologies
that are stored in a relational database. We compare using Dewey+

labeling, NodeCodes and its va riants for the evaluation of
ancestor/descendant queries on ontologies and inbreeding
coefficient calculation on pedigrees. Ancestor/descendant queries
can be ans wered bas ed on the exis tence of the paths between
nodes, while inbreeding coefficient calculations require the
complete path inform ation. W hile Dewey + performs slightly
better for descendant queries fo r DAGs with low selectivity , it
cannot be used to evaluate queries requiring path information, e.g.
inbreeding coefficient queries for pedigrees. NodeCodes enable
evaluation of both ty pes of queri es (requiring path information,
and ancestor/descendant queries) efficiently.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analy sis
and Indexing – Indexing methods.

1. INTRODUCTION
In biomedicine and bioinformatics, ontologies are nowadays
commonly used to annotate objects of interest, such as biological
samples, clinical pictures , or s pecies in a s tandardized way . F or
example, the Gene Ontology (GO) [1] is the res ult of an effort
aimed at providing a controlled vo cabulary for describing roles of
genes and gene products in any or ganism. In these applications,
an ontology is merely a structured vocabulary in the form of a
directed acyclic graph (DAG) of concepts. Ty pically, ontologies
are stored together with the data they annotate in relational
databases.
In past years, some web-based tools for GO have been developed
to help res earchers brows e and s earch for GO terms. e.g.,
Ontology Search and Browser provided by WormBase [2]. A user
can subm it a GO term through the user interface, and then the
browser returns all the paths from the root terms, biological
process, cellular component and molecular function, to the input
term. There are also some online tools for measuring the semantic
similarities of GO term s. For in stance G-SESAME [3] contains a
tool for m easuring the sem antic sim ilarity of GO terms. In G-
SESAME, the semantics of a GO term are determined based on its
relationship with the other terms, and its location in the entire GO
graph. According to the functionalities of the GO-term -based

tools, there are some frequently us ed queries for GO, s uch as
ancestor query, descendant query , and path query . In existing
tools, these queries are processed by iteratively traversing the GO
graph, which lacks scalability . W ith the increasing use of large
ontologies, such as SNOMED [4] , it is even m ore im portant to
have efficient and scalable methods for evaluating relationship-
related queries on large DAG-shaped hierarchies.
In addition to GO, pedigrees are ty pically represented as DAGs
as well. More precisely, a pedigree can be defined as “a simplified
diagram of a family’s genealogy that shows family members’
relationships to each other and how a specific trait, abnormality,
or disease has been inherited” [5] in human genetics. Pedigrees
are hierarchical hereditary structures which are utilized to trace
the inheritance of a specific trait or dis ease, calculate genetic ris k
ratios, and identify individuals at risk. Efficiently evaluating
descendant/ancestor, as we ll as, finding nearest common
ancestors are among the frequently run queries in human genetics.
Furthermore, com puting inbreeding coefficients is a significant
and practical issue in modern genetics [5, 6] . The inbreeding
coefficient measures the probability that the two alleles of a gene
are received from the s ame ances tor [12] . It is zero if the
individual is not inbred. Traditional calculation m ethod utilizes
recursive formula, which is quite time-consuming and cannot
scale very well on large pedigrees. In this paper, our interests are
not only efficiently computing inbreeding coefficients on large
pedigrees, but als o efficiently evaluating frequent query set, such
as descendant/ancestor queries on large ontologies that are s tored
in a relational database.
In this paper, we present Dewey + labeling, NodeCodes, and two
variants of NodeCodes by increm ental and aggregative labeling,
for DAG-shaped hierarchies. We then demonstrate the efficiency
of descendant/ancestor query evaluation by using only the
generated labels. In addition, we show NodeCodes can be used for
evaluating more complex queries , such as inbreeding coefficient
calculation. W e als o pres ent experim ental results evaluating the
performance of four labeling methods for descendant/ancestor
query as well as the inbreeding coefficients calculation.

2. FAMILY OF LABELING SCHEMES
In this paper, we focus on labeling schemes for DAG-shaped
hierarchies, because most com monly us ed ontologies and all
pedigrees are DAG-shaped.

2.1 Dewey+ Labeling
For a tree T, the Dewey labeling [7] directly encodes the parent of
a node in T, as a prefix of its label us ing for instance a depth-first
tree traversal. More precisely , the label of a node v in T is l(u)l(v)
where l(u) is the label of its parent u, l(v) is the sibling order of v
among u’s children.

Permission to make digital or hard copies of all or part of this wor k for
personal or classroom use is granted without fee provided that copies are
not m ade or distr ibuted for pr ofit or com mercial advantage and that
copies bear this notice and the full citation on the fir st page. T o copy
otherwise, or republish, to post on ser vers or to r edistribute to lists,
requires prior specific permission and/or a fee.
ACM-BCB 2010, August 2–4, 2010, Niagara Falls, NY, U.S.A.
Copyright © 2010 ACM ISBN 978-1-4503-0438-2... $10.00.

454

For a directed acyclic graph G, a spanning tree T of the graph G is
constructed in the firs t place. As a result, the edges are divided
into tree-edges and non-tree edges. The spanning tree T is
encoded using a depth-first tree traversal. Therefore, each node in
T is assigned a unique label. Then, given a non-tree edge from u
to v, the label of u is propagated to v and all the descendants of v
by storing an entry [id(d), l(u)] where d is either v or a descendant
of v, id(d) is the id of d. This extension of the Dewey labeling for
DAGs [8] is called Dewey+ labeling in this paper.

2.2 NodeCodes
NodeCodes is a graph encoding sc heme originally proposed for
encoding single source directed graphs [9] . First the roots (nodes
with in-degree 0) are labeled (w e may consider adding a virtual
source node s and making all roots children of s). For each node u
in the graph, the set of NodeCodes of u, denoted NC(u), are
assigned using a breadth-first-search travers al s tarting from the
source node as follows: if u is the virtual source node s, then
NC(u) contains only one element, the empty string. Let u be a
node with a set of NodeCodes, NC(u), and v0, v1, … vk be u’s
children in s ibling order, then for each x in NC(u), a code xi is
added to NC(vi), where 0  i  k.

2.3 Variants of NodeCodes
A variant of NodeCodes for pedigrees called Family NodeCodes
is introduced in [5] . It enables evaluating pedigree queries
efficiently. Here, we consider partitioning ontologies to trees and
present two labeling schemes based on this tree partitioning.
The idea behind tree-based partitioning for arbitrary taxonomies
is based on the observation that, in a tree, each node has a single
NodeCode. The automated identification of local tree structures in
a taxonomy can be performed as follows: i) starting from level 0,
traverse the taxonomy in breadth-first manner; ii) whenever a
node v with multiple parents is encountered start a new tree with n
as its root; iii) repeat this pr ocedure until all the nodes in the
taxonomy are exhausted.

2.3.1 Incremental Labeling
Root node n of a local tree contains two sets of NodeCodes: (i)
global NodeCodes: standard NodeCodes that are inherited from
n’s immediate parents in other trees, and (ii) local NodeCodes: an
independent newly generated local NodeCode, one per node in a
tree. The other nodes in a tree are labeled using the standard
NodeCode approach, where only the local NodeCode of the root
node is considered for labeling other nodes in the same tree. Since
each root node has a single local NodeCode, in each tree, it is
guaranteed that all nodes (except the root node) have a single
node code.

2.3.2 Aggregative Labeling
In this labeling scheme, global NodeCode set of the root node n in
a tree Ti includes global NodeCodes of roots in those trees that are
above Ti according to the hierarchical organization of the
taxonomy, as well as the NodeCodes that are inherited from n’s
direct parents using standa rd NodeCode labeling scheme . The
internal nodes in each tree are labeled in the sam e way as done in
incremental labeling approach as illustrated in Section 2.3.1.

3. QUERY EVALUATIONS

3.1 Processing Descendant Query
Given a term t in a taxonomy T, the goal of this query is to find
the set of all descendant terms of t in T.

1) Using standard NodeCode s: obtain the terms whose
NodeCodes start with t’s NodeCode.
2) Using incremental NodeCodes: first obtain the terms whose
NodeCodes start with t’s local NodeCode. Then, from each local
tree, we can iteratively use the root of the local tree to obtain all
its descendant terms.
3) Using aggregative NodeCodes: first obtain the terms whose
NodeCodes start with t’s local NodeCode. Then, from each local
tree, we can us e the root of the local tree to obtain all its
descendant terms.
4) Using Dewey + labels: first get the descendants of t that are
reachable to t by tree edges . Then, we proces s the (TermID,
ancestorLabel) entries to get the descendants that are reachable to
t with at least one non-tree edge.
3.2 Processing Ancestor Query
Given a term t in a taxonomy T, the goal of this query is to find
the set of all ancestor terms of t in T.
1) Using standard NodeCodes: obtain the prefixes of all t’s
NodeCodes, which each unique prefix corresponds to an ancestor
of t.
2) Using incremental NodeCodes: first obtain the prefixes of t’s
local NodeCode, plus the prefixes of t’s global NodeCodes, if
exist. Then, from each local tree, we can iteratively use the root of
the local tree to obtain all its ancestor terms.
3) Using aggregative NodeCodes: first obtain the prefixes of t’s
local NodeCode, plus the prefixes of t’s global NodeCodes, if
exist. Then, from each local tree, we can use the root of the local
tree to obtain all its ancestor terms.
4) Using Dewey + labels: get the ances tors of that are reachable to
t by tree edges . Then, we proces s the (TermID, ancestorLabel)
entries to return the labe ls of the ances tors of t that are reachable
to t with at least one non-tree edge.

3.3 Processing Inbreeding Query
If an individual has inbreeding, the inbreeding coefficient is
calculated using Wright’s formula [10] , where the paths from an
ancestor to a given individual are required. First of all,
NodeCodes has the capability for directly identify ing all paths
from a progenitor to a given individual. Although incremental and
aggregative NodeCodes can iteratively identify the paths using
both local NodeCodes and globa l NodeCodes, they are less
efficient than s tandard NodeCodes. While, Dewey+ labels cannot
fully obtain the path information from the non-tree edges
propagation table, which cannot contribute to the inbreeding
query. Below presents the general outline for calculating the
inbreeding coefficient of an individual p using NodeCodes.

CalculatingInbreedingCoefficients

Input: NodeCodes NC(p)
Output: Inbreeding coefficient of p
1. Find the NodeCodes of mother m and father f of individual p.
2. Identify common ancestors of mother m and father f.
3. For each common ancestor c
 a. Find the set of pairs of paths from c to m and f.
 b. Identify non-overlapping pairs of paths
 c. Find the number of generations between the common
ancestor and the individual for the non-overlapping pairs of paths.
 d. Compute the inbreeding coefficient.

455

The details of using NodeCodes for inbreeding coefficients
computation can be found in [5] . In addition, we also
demonstrated the efficiency of using NodeCodes for kinship
coefficients, and generalized kins hip coefficients which are
important genetic measures in modern genetics as well [6].

4. EXPERIMENTS
In this section, we show the e fficiency of four labeling methods
for ancestor and descendant queries on GO. The total number of
labels for GO is listed in Table 1. We tested the effectivenes s of
four labeling methods using C# 2005 and SQL Server 2005. All
queries were run on cold cache and the test machine was a 2.0Ghz
Pentium 4 with 1GB RAM running Windows XP. For GO, we
compare 5 methods: Iterative, StandardNC, IncrementalNC,
AggregativeNC, and Dewey+ Labeling. Iterative method refers to
the method which the descendants/ancestors of a given term by
iteratively traversing the GO graph.

Table 1. The number of labels using four labeling schemes
Methods # of Labels AVG (labels per term)

StandardNC 330,802 13
IncrementalNC 52,126 2
AggregativeNC 213,725 8

Dewey+ Labeling 129,557 5

First, we run des cendant queries on 5 different cases: each case
corresponds to a different choice of input node and therefore of
query selectivity . In this paper, for any query, its selectivity is
defined as the proportion of terms that it returns. In this
experiment, we choose the sel ectivity ranging from 58.7% to
0.01%. We run thes e five queries 50 tim es each and the average
query processing time is shown in Table 2.

Table 2. Execution time (ms) of descendant query for 5 cases
(% selectivity)

Methods
Case1 Case2 Case3 Case4 Case5

58.7% 22. 1% 4. 96% 1. 27% 0.01%
Iterative 125031 47687 10359 2656 31

StandardNC 656 484 609 437 531
IncrementalNC 35453 2937 984 156 62
AggregativeNC 19875 1718 500 171 31
Dewey+Labeling 28187 3343 140 125 31

According to Table 2, we can recom mend the us e of a particular
labeling scheme according to the characteristics of a taxonomy. In
GO, the average selectivity of all term s is 0.04%, which is close
to Cas e5. Cons idering the s pace cos t and tim e cos t, Dewey+
Labeling is a good choice for GO.
Then, we run ancestor queries for 5 cases having different
selectivity. In this experiment, we choose the selectivity ranging
from 2.13% to 0.118%. W e run these five queries 50 times each
and the average query processing time is shown in Table 3.
Table 3. Execution time (ms) of ancestor query for 5 cases (% selectivity)

Methods
Case1 Case2 Case3 Case4 Case5

2.13% 1. 06% 0.552% 0.276% 0.118%
Iterative 468 234 125 78 31

StandardNC 484 500 765 671 296
IncrementalNC 359 109 31 31 31
AggregativeNC 156 93 62 62 31
Dewey+Labeling 234 171 46 46 31
As can be seen, for Case1 and Case2, AggregativeNC performs
best. As the selectivity becomes lesser, IncrementalNC performs
best for Case3 and Case4. For Case5, Iterative, IncrementalNC,

AggregativeNC, and Dewey+ Labeling have the same query
processing time.
In this experiment, we show th e effectiveness of NodeCodes for
inbreeding query by comparing the use of NodeCodes with a
recursive method used in existing systems [11]. First, we show
the effect of pedigree size on the query processing time. The
results are s hown in F igure 4 for the average tim e per query for
each pedigree (as the pedigree size doubles).

0 50000 100000 150000 200000
0

50

100

150

200

250

300

350

Figure 4: Effect of Pedigree Size on Average Query Time
in Synthetic Pedigrees (100 random individ. each)

A
ve

ra
g

e
T

im
e

 p
e

r
Q

u
er

y
(m

s)

Individuals in Pedigree

 Iterative (Avg)
 NodeCodes (Avg)

As can be s een, the expected tim e per query grew increas ingly
longer on iterative compared to NodeCodes as the pedigree size
increased, from a comparable amount of time on the small
pedigrees (<3000 individuals) to twice as much time per query on
the largest.

5. ACKNOWLEDGMENTS
This work is partially supported by the US National Science
Foundation grants DBI-0218061, ITR-0312200 and CNS-
0551603.

6. REFERENCES
[1] M ichael Ashbur ner et al. Gene On tology: tool for the unification of
biology, Nature Genetics 25, pp.25-29, 2000.
[2] WormBase Site Map,
http://www.wormbase.org/db/misc/site_map?format=searches
[3] Zhidian Du et al., G- SESAME: web tools for GO- term-based gene
similarity analy sis and knowledge discover y, Nucleic Acids Research.
2009, Vol. 37, Web Server issue, W345-349.
[4] SNOMED,
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
[5] B. Elliott, E. Cheng, S. Maye s, Z. M. Ozsoyoglu, Efficiently
Calculating I nbreeding on L arge Pedigr ees Databases, Information
Systems, 34(6):469-492, 2009.
[6] E. Cheng, B. Elliott, Z. M. Oz soyoglu, Efficien t Com putation of
Kinship and Identity Coefficients on Large Pedigrees, Journal of
Bioinformatics and Computational Biology, 7(3):429-453, 2009.
[7] Online Computer Library Center, Dewey decimal classification,
http://www.oclc.org/dewey
[8] V. Chr istophides et al. , Optim izing taxonomic semantic web quer ies
using labeling schemes, Web Semantics: Science, Services and Agents on
the World Wide Web 1 (2004) 207-228.
[9] L. Sheng, Z. M. Ozsoyoglu, G. Ozsoyoglu, A Gr aph Query Language
and Its Query Processing. Proc. Of ICDE Conference, 1999.
[10] Sewall W right. Coefficients of Inbreeding and Relationship. In The
American Naturalist, Vol. 56, No. 645, 1922.
[11] R. Agarwala et al. Sof tware for Constructing and Verifying Pedigrees
Within Large Genealogies and an Application to the Old Or der Amish of
Lancaster County. Genome Research, 98(8):211-221, 1998.
[12] Malécot, G. (1948) Les mathématiques de l’ hérédité, Masson et Cie,
Paris. Lange, K. (1997) Mathematical and statistical m ethods for genetic
analysis, Springer-Verlag, New-York.

456

